Cu-Catalyzed Aminodifluoroalkylation of Alkynes and α -Bromodifluoroacetamides

Yunhe Lv,*^{,†}® Weiya Pu,[†] Qian Chen,[†] Qingqing Wang,[†] Jiejie Niu,[†] and Qian Zhang^{*,‡}

[†]College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China [‡]Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

Supporting Information

ABSTRACT: The copper-catalyzed highly regioselective aminodifluoroalkylation of alkynes and α -bromodifluoroacetamides was realized for the first time. With this method, 3,3difluoro-1*H*-pyrrol-2(3*H*)-ones were constructed in a single step from various alkynes and α -bromodifluoroacetamides substrates without using any extra oxidant.

The introduction of fluorine atoms or fluorinated moieties can alter molecular physical and chemical properties and biological activities in a dramatic way.¹ Nitrogen-containing heterocycles are the key core of bioactive molecules. Therefore, efficient synthesis of fluorinated nitrogen-containing heterocycles is highly desirable for exploration of new pharmaceuticals.³ As part of our ongoing study on aminofluorination reaction of alkenes and aminoarylation of alkynes using N-fluorobenzenesulfonimide (NFSI) as nitrogen source and the fluorine or aryl source,⁴ we try to synthesize fluorinated nitrogen-containing heterocycles directly from alkynes by seeking a reagent with both fluorine and nitrogen moieties. Our literature survey showed that α -bromodifluoroacetamides might be suitable reagents for this purpose.⁵ As we know, the gem-difluoromethylene group (CF_2) not only acts as lipophilic hydrogen bond donors and as bioisosteres of alcohols and thiols but also may significantly improve the biological stability.⁶ Very recently, via reductive cleavage of C-Br bond, α -bromodifluoroacetamides were successfully utilized as a fluoroalkyl radical reagent which can be trapped by a series of unsaturated compounds.^{5c,d} On the other hand, in the presence of transition metal, oxidant, and base, α -bromodifluoroacetamides may also be used as a suitable reagent for amination via cleavage of N-H bond in N-aryl amides." Therefore, we reasoned that in the presence of one suitable catalyst, the above two processes could be consequentially realized to fulfill a catalytic cycle. Thus, the gem-difluoro group and nitrogen atom can be simultaneously installed into an unsaturated C-C bond, which will lead a gem-difluorinated aza-heterocycle (Scheme 1).

In contrast to the recent significant progress in the difluoromethylation of arenes^{5b,8} and difluoromethylation difunctionalization of alkenes,^{5d,9} efficient difluoroalkylation of less reactive alkynes are less abundant. Recently, examples of metal-catalyzed difluoromethylation difunctionalization of alkynes such as halodifluoroalkylation, aryldifluoromethylation, cyanodifluoroalkylation, and carbodifluoroalkylation was real-

Scheme 1. Aminodifluoromethylation of Alkynes and Our Strategy

ized to provide molecules with important difluoroalkyl units $(C=CCF_2R)$.¹⁰ However, to our knowledge, aminodifluoroalkylation of simple alkynes has never been reported. Herein, we report the first example of a copper-catalyzed highly regioselective aminodifluoroalkylation of alkynes with α -bromodifluoroacetamides as both fluorine and nitrogen sources for facile access to a series of fluorinated aza-heterocycles 3,3-difluoro-1*H*-pyrrol-2(3*H*)-ones¹¹ (Scheme 1).

We began our investigation utilizing the reaction between ethynylbenzene **1a** and 2-bromo-2,2-difluoro-N-(p-tolyl)acetamide **2a** as the model reaction (Table 1). With CuI as the catalyst in the presence of K₂CO₃ in MeCN, the model reaction was performed at 110 °C for 2 h under air, and no desired aminodifluoroalkylation product was observed (Table 1, entry 1). When 10 mol % pyridine was added to the above reaction, intermolecular aminodifluoroalkylation product **3a** was obtained in 18% yield (Table 1, entry 2). We were pleased to discover that 1,10-phenanthroline (Phen) was an extremely

 Received:
 May 27, 2017

 Published:
 July 10, 2017

 Table 1. Optimization of the Reaction Conditions^a

Ph—==	E + Br	2a	copper salt / solvent	P L	h N F O 3a
entry	metal	ligand	additive	solvent	yield (%) ^b
1	CuI	none	K ₂ CO ₃	CH ₃ CN	0
2	CuI	pyridine	K ₂ CO ₃	CH ₃ CN	18
3	CuI	bipy	K_2CO_3	CH ₃ CN	9
4	CuI	Ph ₃ P	K_2CO_3	CH ₃ CN	7
5	CuI	Phen	K ₂ CO ₃	CH ₃ CN	92
6	CuI	Phen	none	CH ₃ CN	trace
7	none	Phen	K_2CO_3	CH ₃ CN	trace
8	CuI	Phen	KO ^t Bu	CH ₃ CN	15
9	CuI	Phen	Et ₃ N	CH ₃ CN	29
10	CuBr	Phen	K_2CO_3	CH ₃ CN	86
11	CuCl	Phen	K_2CO_3	CH ₃ CN	90
12	$Cu(OTf)_2$	Phen	K_2CO_3	CH ₃ CN	41
13	$Cu(OAc)_2$	Phen	K_2CO_3	CH ₃ CN	45
14	CuI	Phen	K_2CO_3	EtOH	6
15	CuI	Phen	K_2CO_3	DMF	8
16	CuI	Phen	K_2CO_3	EtOAc	19
17 ^c	CuI	Phen	K_2CO_3	CH ₃ CN	24

^{*a*}Reactions were carried out with **1a** (0.45 mmol), **2a** (0.3 mmol), metal (10 mol %), ligand (10 mol %), and additive (2.0 equiv) in 3 mL of solvent under an air atmosphere at 110 °C for 2 h unless noted otherwise. ^{*b*}Yield of the isolated product. ^{*c*}The reaction was performed at 90 °C. Phen = 1,10-phenanthroline, Tf = trifluoromethanesulfonyl, bipy = 2,2'-bipyridine.

efficient ligand for promoting the reaction, affording **3a** in 92% yield (Table 1, entries 3–5). Control reactions demonstrated that base and catalyst were essential to the reaction (Table 1, entries 6 and 7). Other bases such as KO⁶Bu and Et₃N were not as effective as K_2CO_3 (Table 1, entries 8 and 9). Further investigation on different copper salts revealed that CuBr and

Table 2. Reactions of Alkynes 1 with $2a^{a}$

CuCl were also efficient catalysts for this transformation, affording product **3a** in satisfying 86 and 90% yields, respectively (Table 1, entries 10 and 11). With $Cu(OTf)_2$ and $Cu(OAc)_2$ as catalysts, **3a** was provided in 41 and 45% yields, respectively (Table 1, entries 12 and 13). Other solvents (e.g., EtOH, DMF, and EtOAc) were examined but did not lead to any significant improvement (Table 1, entries 14–16). When the reaction was performed at 90 °C, **3a** was isolated in 24% yield (Table 1, entry 17). It should be noted that the transformation from **1a** into **3a** represents the first direct aminodifluoroalkylation from alkynes.

With the optimized reaction conditions in hand (Table 1, entry 5), the scope of the aminodifluoroalkylation of alkynes was examined, and the results are shown in Table 2. The reaction of 2a and a variety of alkynes derivatives afforded the desired aminodifluoroalkylation products 3 in 55-92% yields. Halo-substituted phenylacetylenes (1b-1d, 1k, 1l, 1s, and 1t) were tolerated in the aminodifluoroalkylation reaction and could be very useful for further transformations. Phenylacetylene substrates bearing electron-withdrawing substituents such as F, Cl, Br, and nitro were effectively converted into the corresponding products in moderate to excellent yields. Substrates with electron-donating substituents on the aromatic ring underwent aminodifluoroalkylation smoothly to afford the desired products (3e-3j and 3n-3r) in good yields. In addition, heteroaromatic alkynes such as 3-ethynylthiophene 1u were also effective to provide 3u in 72% yield. Internal alkynes were subsequently examined. Starting from prop-1-yn-1ylbenzene 1v and but-1-yn-1-ylbenzene 1w, 3v and 3w were obtained in 85 and 82% yields, respectively. However, from the substrates hex-1-yne 1x and diphenylacetylene 1y, no reactions occurred, and the substrate 2a was completely recovered. Remarkably, in all cases, the reactions proceeded smoothly under air, and high regioselectivities were observed.

To further explore the potential of this efficient aminodifluoroalkylation reaction, a variety of α -bromodifluoroacetamides was investigated. As shown in Table 3, α -bromodi-

^aReactions were carried out with 1 (0.45 mmol), 2a (0.3 mmol), CuI (10 mol %), Phen (10 mol %), and K_2CO_3 (2.0 equiv) in CH₃CN (3 mL) under air atmosphere at 110 °C for 2 h. Yield of the isolated product. ^bThe reaction was run for 4 h.

Table 3. Reactions of Ethynylbenzene 1a with α -Bromodifluoroacetamides 2^{*a*}

^aReactions were carried out with 1a (0.45 mmol), 2 (0.3 mmol), CuI (10 mol %), Phen (10 mol %), and K_2CO_3 (2.0 equiv) in CH₃CN (3 mL) under air atmosphere at 110 °C for 2 h. Yield of the isolated product.

fluoroacetamides with different substituents at the aromatic ring could be converted to the desired products 4b-4k in moderate to good yields. Slightly decreased but acceptable yields were also achieved for reactions starting from *ortho*-substituted aryl amides (2i and 2j). Remarkably, we found that not only *N*-aryl substrates but also *N*-alkyl substrates worked well, affording 4l and 4m in 68 and 63% yields, respectively. However, the desired annulation product was not observed between the reaction of ethynylbenzene with monofluoroacetamide 2-bromo-2-fluoro-*N*-(*p*-tolyl)acetamide 2n.¹²

To gain insight into the mechanism of this transformation, a radical trapping experiment was performed. When the radical scavenger 2,2,6,6-tetramethylpiperidine *N*-oxide (TEMPO, 2.0 equiv) was added to the aminodifluoroalkylation reaction of **1a** under the optimal conditions, no desired products were isolated, and 80% **2a** was recovered (eq 1). The results indicate

that a radical pathway may be involved under the catalytic system. On the basis of the present experimental results and literature precedent, a possible mechanism was proposed as described in Scheme 2. Initially, the reaction of CuI and 2b gave a radical intermediate ${\bf A}$ and ${\bf Cu}^{\rm II}$ species via a single electron transfer (SET) process.^{5c} Subsequently, addition of the in situ generated fluoroalkyl radical A to the C-C triple bond of alkyne leads to the formation of vinyl radical^{10c,e} which, with Cu^{II} species, gave the intermediate **B** in the presence of K₂CO₃. Nitrogen atom transfer from Cu^{II} to the adduct radical produces the aminodifluoroalkylation product and regenerates Cu^{1,13} which enters into the next catalytic circle. On the other hand, we could not exclude another pathway: Cu^{II}-amido species reacts with vinyl radicals to form vinyl-Cu^{III}-amido species C, which then undergoes the final reductive elimination to give the desired annulation product.^{7a,10c,e,14}

In summary, we developed the first example of coppercatalyzed radical aminodifluoroalkylation reaction of alkynes for the synthesis of 3,3-difluoro-1*H*-pyrrol-2(3*H*)-ones. The high

Scheme 2. Plausible Reaction Mechanism

regioselectivity, broad substrate scope, no extra oxidant, and low loading of the copper catalyst make the aminodifluoroalkylation reactions very attractive. We believe that it should prompt further research in the area of transition-metal catalyzed aminodifluoroalkylation reactions and related chemistry using α -bromodifluoroacetamides as both difluoroalkyl and nitrogen sources.

EXPERIMENTAL SECTION

All reagents were purchased from commercial sources and used without further treatment unless otherwise indicated. All reactions were run under air with no precautions taken to exclude moisture. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded at 25 °C on a Varian instrument (400, 100, and 376 MHz). Melting points were obtained with a micro melting point XT4A Beijing Keyi electrooptic apparatus and are uncorrected. High resolution mass spectra were recorded on Bruck microTof. All reactions were monitored by TLC with Taizhou GF254 silica gel coated plates. Flash column chromatography was carried out using 200–300 mesh silica gel at increased pressure.

General Procedure for the Preparation of 10–1r. Substrates **10–1q** were prepared by the reaction of corresponding anilines (1 mmol) and acyl chlorides (1.1 mmol) in CH_2Cl_2 at room temperature. Substrates **1r** was prepared according to literature procedure.¹⁵

General Procedure for the Preparation of 2 (2a as Example). In a nitrogen-filled glovebox, *p*-toluidine (535.8 mg, 5.0 mmol), ethyl bromodifluoroacetate (785.1 μ L, 6.0 mmol), and La(OTf)₃ (146.5 mg, 0.25 mmol) were combined in screw-cap test tube. The reaction mixture was stirred at 50 °C and monitored by TLC. After the amine was exhausted, the mixture was purified by silica gel column chromatography to give the corresponding products **2a** (1.21 g, 92%).

General Procedure for the Preparation of 3 and 4 (3a as Example). To a solution of the 2-bromo-2,2-difluoro-*N*-(*p*-tolyl)-acetamide 2a (79.2 mg, 0.3 mmol) in CH₃CN (3.0 mL) was added the ethynylbenzene 1a (49 μ L, 0.45 mmol), Phen (5.4 mg, 0.03 mmol), CuI (5.7 mg, 0.03 mmol), and K₂CO₃ (82.9 mg, 0.6 mmol) in screw-cap test tube. The reaction mixture was stirred at 110 °C for 2.0 h. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (5.0 mL × 3); the combined organic phases were dried over anhydrous Na₂SO₄, and the solvent was evaporated under vacuum. The residue was purified by column chromatography to give the corresponding products 3a (78.7 mg, 92%).

N-(3-*Ethynylphenyl*)*acetamide* **10**. White solid (149.5 mg, 94%). Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. Mp: 86–88 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.13 (s, 3H), 3.04 (s, 1H), 7.20 (d, *J* = 6.8 Hz, 2H), 7.48–7.49 (m, 1H), 7.67 (s, 1H), 8.60 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 24.2, 77.4, 83.1, 120.7, 122.5, 123.6, 127.8, 128.8, 138.0, 169.4. HRMS (ESI-TOF) calcd for C₁₀H₁₀NO, [M + H]⁺ *m*/*z* 160.0762, found 160.0764.

N-(*3*-*Ethynylphenyl)pivalamide* **1p**. White solid (189.0 mg, 94%). Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. Mp: 144–146 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.27 (s, 9H), 3.03 (s, 1H), 7.17–7.20 (m, 2H), 7.50–7.53 (m, 1H), 7.56 (s, 1H), 7.64 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.4, 39.5, 77.3, 83.1, 120.8, 122.5, 123.7, 127.7, 128.7, 138.0, 176.8. HRMS (ESI-TOF) calcd for C₁₃H₁₆NO, [M + H]⁺ *m*/*z* 202.1232, found 202.1230.

N-(*3*-*Ethynylphenyl)benzamide* **1q**. White solid (198.9 mg, 90%). Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. Mp: 122−124 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.08 (s, 1H), 7.26−7.31 (m, 2H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.77 (s, 1H), 7.84 (d, *J* = 7.6 Hz, 2H), 8.12 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 77.5, 83.1, 120.9, 122.8, 123.8, 127.0, 128.2, 128.7, 129.0, 131.9, 134.6, 138.0, 166.0. HRMS (ESI-TOF) calcd for C₁₅H₁₂NO, [M + H]⁺ *m*/*z* 222.0919, found 222.0926.

tert-Butyl (*3-Ethynylphenyl*)*carbamate* 1*r*. White solid (173.7 mg, 80%). Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. Mp: 70–72 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.50 (s, 9H), 3.04 (s, 1H), 6.75 (s, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.53 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 28.2, 77.1, 80.6, 83.3, 119.0, 121.9, 122.6, 126.6, 128.8, 138.4, 152.6. HRMS (ESI-TOF) calcd for C₁₃H₁₆NO₂, [M + H]⁺ *m*/*z* 218.1181, found 218.1171.

2-Bromo-2,2-difluoro-N-(p-tolyl)acetamide **2a**. White solid (1.21 g, 92%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 118–120 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 7.18 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.97 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 20.9, 111.6 (t, J = 315.0 Hz), 120.5, 129.8, 132.7, 136.1, 157.4 (t, J = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.4. HRMS (ESI-TOF) calcd for C₉H₉BrF₂NO, [M + H]⁺ m/z 263.9836, found 263.9828.

2-Bromo-2,2-difluoro-N-phenylacetamide **2b**. White solid (1.12 g, 90%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 46–48 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 111.4 (t, *J* = 315.0 Hz), 120.6, 126.2, 129.3, 135.2, 157.6 (t, *J* = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.6. HRMS (ESI-TOF) calcd for C₈H₇BrF₂NO, [M + H]⁺ *m*/z 249.9679, found 249.9680.

2-Bromo-N-(4-chlorophenyl)-2,2-difluoroacetamide **2c**. White solid (1.16 g, 82%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 136–138 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 7.88 (s,

1H); ¹³C NMR (100 MHz, CDCl₃): δ 111.3 (t, J = 315.0 Hz), 121.7, 129.5, 131.6, 133.8, 157.5 (t, J = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.7. HRMS (ESI-TOF) calcd for C₈H₆BrClF₂NO, [M + H]⁺ m/z 283.9289, found 283.9287.

2-Bromo-N-(4-bromophenyl)-2,2-difluoroacetamide **2d**. White solid (1.36 g, 83%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 144–146 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, *J* = 8.8 Hz, 2H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 111.3 (t, *J* = 315.0 Hz), 119.2, 122.0, 132.4, 134.3, 157.4 (t, *J* = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.7. HRMS (ESI-TOF) calcd for C₈H₆Br₂F₂NO, [M + H]⁺ *m/z* 329.8764, found 329.8770.

2-Bromo-N-(4-ethylphenyl)-2,2-difluoroacetamide **2e**. White solid (1.26 g, 91%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 98–99 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, *J* = 7.6 Hz, 3H), 2.65 (q, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 15.5, 28.3, 111.6 (t, *J* = 315.0 Hz), 120.5, 128.7, 132.9, 142.4, 157.4 (t, *J* = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.4. HRMS (ESI-TOF) calcd for C₁₀H₁₁BrF₂NO, $[M + H]^+ m/z$ 277.9992, found 277.9999.

2-Bromo-N-(4-(tert-butyl)phenyl)-2,2-difluoroacetamide **2f**. White solid (1.37 g, 90%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 115–117 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.32 (s, 9H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.81 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 31.2, 34.5, 111.5 (t, *J* = 315.0 Hz), 120.3, 126.1, 132.6, 149.4, 157.6 (t, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.4. HRMS (ESI-TOF) calcd for C₁₂H₁₅BrF₂NO, [M + H]⁺ *m*/*z* 306.0305, found 306.0309.

2-Bromo-2,2-difluoro-N-(4-methoxyphenyl)acetamide **2g**. White solid (1.31 g, 94%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 117–119 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.81 (s, 3H), 6.91 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.5, 111.7 (t, *J* = 315.0 Hz), 114.5, 122.2, 128.1, 157.4 (t, *J* = 28.0 Hz), 157.7; ¹⁹F NMR (376 MHz, CDCl₃): δ –60.4. HRMS (ESI-TOF) calcd for C₉H₉BrF₂NO₂, [M + H]⁺ *m/z* 279.9785, found 279.9782.

2-Bromo-2,2-difluoro-N-(m-tolyl)acetamide **2h**. White solid (1.18 g, 90%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 60–61 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.36 (s, 3H), 7.06 (d, *J* = 7.2 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.43 (s, 1H), 8.14 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.3, 111.5 (t, *J* = 315.0 Hz), 117.7, 121.2, 127.0, 129.0, 135.1, 139.3, 157.6 (t, *J* = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.5. HRMS (ESI-TOF) calcd for C₉H₉BrF₂NO, [M + H]⁺ m/z 263.9836, found 263.9833.

2-Bromo-2,2-difluoro-N-(o-tolyl)acetamide **2i**. White solid (1.12 g, 85%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 72–74 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.27 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 8.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 111.5 (t, *J* = 315.0 Hz), 117.8, 121.3, 127.0, 129.0, 135.1, 139.2, 157.7 (t, *J* = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.4. HRMS (ESI-TOF) calcd for C₉H₉BrF₂NO, $[M + H]^+ m/z$ 263.9836, found 263.9830.

2-Bromo-2,2-difluoro-N-(2-methoxyphenyl)acetamide **2***j*. White solid (1.26 g, 90%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 78–79 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.93 (s, 3H), 6.93 (d, *J* = 8.0 Hz, 1H), 7.01 (t, *J* = 8.0 Hz, 1H), 7.16 (t, *J* = 8.0 Hz, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 8.54 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.9, 110.2, 111.6 (t, *J* = 315.0 Hz), 120.0, 121.2, 125.2, 125.8, 148.4, 157.0 (t, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.2. HRMS (ESI-TOF) calcd for C₉H₉BrF₂NO₂, [M + H]⁺ m/z 279.9785, found 279.9778.

2-Bromo-N-(3,4-dimethoxyphenyl)-2,2-difluoroacetamide **2k**. White solid (1.45 g, 94%). Petroleum ether/ethyl acetate = 90/1 as eluent for column chromatography. Mp: 138–140 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (s, 3H), 3.91 (s, 3H), 6.86 (d, *J* = 8.8 Hz, 1H), 6.98 (dd, *J*₁ = 2.4 Hz, *J*₂ = 8.8 Hz, 1H), 7.32 (d, *J* = 2.4 Hz, 1H), 7.72 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.9, 56.0, 105.0, 111.3,

The Journal of Organic Chemistry

111.6 (t, J = 315.0 Hz), 112.8, 128.7, 147.2, 149.2, 157.4 (t, J = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.3. HRMS (ESI-TOF) calcd for C₁₀H₁₁BrF₂NO₃, [M + H]⁺ m/z 309.9890, found 309.9881.

N-Benzyl-2-bromo-2,2-difluoroacetamide **2***I*. White solid (1.25 g, 95%). Petroleum ether/ethyl acetate = 100/1 as eluent for column chromatography. Mp: 44–45 °C. ¹H NMR (400 MHz, CDCl₃): δ 4.49 (d, *J* = 6.0 Hz, 2H), 6.98 (s, 1H), 7.28–7.31 (m, 2H), 7.33–7.39 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 43.9, 111.7 (t, *J* = 314.0 Hz), 127.7, 128.0, 128.9, 136.1, 160.0 (t, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.5. HRMS (ESI-TOF) calcd for C₉H₉BrF₂NO, [M + H]⁺ *m/z* 263.9836, found 263.9831.

2-Bromo-2,2-difluoro-N-phenethylacetamide **2m**. White solid (1.32 g, 95%). Petroleum ether/ethyl acetate = 100/1 as eluent for column chromatography. Mp: 92–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.91 (t, *J* = 6.8 Hz, 2H), 3.62 (q, *J* = 6.8 Hz, 2H), 6.50 (s, 1H), 7.22 (d, *J* = 6.8 Hz, 2H), 7.26–7.29 (m, 1H), 7.35 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 34.9, 41.3, 111.7 (t, *J* = 314.0 Hz), 126.9, 128.7, 128.8, 137.7, 160.0 (t, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –60.4. HRMS (ESI-TOF) calcd for C₁₀H₁₁BrF₂NO, [M + H]⁺ *m/z* 277.9992, found 277.9983.

3,3-Difluoro-5-phenyl-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3a**. White solid (78.7 mg, 92%). Petroleum ether/ethyl acetate = 50/1 as eluent for column chromatography. Mp: 106–108 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 5.63 (t, *J* = 1.2 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 99.8 (t, *J* = 23.0 Hz), 112.9 (t, *J* = 244.0 Hz), 126.5, 127.9, 128.5, 128.8, 129.6, 130.6, 130.9, 137.9, 154.6 (t, *J* = 11.0 Hz), 166.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.1. HRMS (ESI-TOF) calcd for C₁₇H₁₄F₂NO, [M + H]⁺ *m*/*z* 286.1043, found 286.1042.

3,3-Difluoro-5-(4-fluorophenyl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3b**. Colorless oil (82.7 mg, 91%). Petroleum ether/ethyl acetate = 70/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H), 5.61 (d, *J* = 1.6 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.98 (t, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.16–7.20 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 99.7 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 115.8 (d, *J* = 22.0 Hz), 124.9 (d, *J* = 3.0 Hz), 126.6, 129.8, 130.1 (d, *J* = 8.0 Hz), 130.8, 138.1, 153.5 (t, *J* = 11.0 Hz), 163.8 (d, *J* = 251.0 Hz), 166.7 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.0, –108.3. HRMS (ESI-TOF) calcd for C₁₇H₁₃F₃NO, [M + H]⁺ *m*/z 304,0949, found 304,0944.

5-(4-Chlorophenyl)-3,3-difluoro-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3c**. Colorless oil (81.3 mg, 85%). Petroleum ether/ethyl acetate = 70/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H), 5.64 (s, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 7.11–7.14 (m, 4H), 7.27 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 100.1 (t, *J* = 23.0 Hz), 112.7 (t, *J* = 244.0 Hz), 126.5, 127.2, 128.9, 129.2, 129.8, 130.7, 136.9, 138.2, 153.4 (t, *J* = 11.0 Hz), 166.7 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.1. HRMS (ESI-TOF) calcd for C₁₇H₁₃ClF₂NO, $[M + H]^+ m/z$ 320.0654, found 320.0649.

5-(4-Bromophenyl)-3,3-difluoro-1-(*p*-tolyl)-1H-pyrrol-2(3H)-one **3d**. Colorless oil (89.3 mg, 82%). Petroleum ether/ethyl acetate = 60/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H), 5.64 (s, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 100.1 (t, *J* = 23.0 Hz), 112.6 (t, *J* = 244.0 Hz), 125.2, 126.5, 127.7, 129.4, 129.8, 130.7, 131.9, 138.2, 153.5 (t, *J* = 11.0 Hz), 166.7 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -110.2. HRMS (ESI-TOF) calcd for C₁₇H₁₃BrF₂NO, [M + H]⁺ m/z 364.0149, found 364.0156.

3,3-Difluoro-1,5-di-p-tolyl-1H-pyrrol-2(3H)-one **3e**. Colorless oil (73.6 mg, 82%). Petroleum ether/ethyl acetate = 70/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 6H), 5.58 (s, 1H), 6.91–6.93 (m, 2H), 7.07–7.13 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 21.4, 99.1 (t, J = 23.0 Hz), 113.0 (t, J = 244.0 Hz), 125.9, 126.6, 127.9, 129.2, 129.6, 131.1, 137.8, 141.0, 154.6 (t, J = 11.0 Hz), 167.0 (t, J = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃):

 δ –109.8. HRMS (ESI-TOF) calcd for C₁₈H₁₆F₂NO, [M + H]⁺ m/z 300.1200, found 300.1218.

5-(4-Ethylphenyl)-3,3-difluoro-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3f**. Colorless oil (76.1 mg, 81%). Petroleum ether/ethyl acetate = 70/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 1.21 (t, *J* = 7.6 Hz, 3H), 2.33 (s, 3H), 2.63 (q, *J* = 7.6 Hz, 2H), 5.59 (s, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 7.08–7.13 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 15.0, 21.1, 28.6, 99.1 (t, *J* = 23.0 Hz), 113.0 (t, *J* = 244.0 Hz), 126.1, 126.6, 127.9, 128.0, 129.6, 131.1, 137.8, 147.2, 154.6 (t, *J* = 11.0 Hz), 167.0 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.7. HRMS (ESI-TOF) calcd for C₁₉H₁₈F₂NO, [M + H]⁺ m/z 314.1356, found 314.1353.

3,3-Difluoro-5-(4-propylphenyl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3g**. Colorless oil (81.4 mg, 83%). Petroleum ether/ethyl acetate = 70/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, *J* = 7.2 Hz, 3H), 1.57–1.63 (m, 2H), 2.33 (s, 3H), 2.56 (t, *J* = 7.6 Hz, 2H), 5.59 (s, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 7.08–7.12 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 13.7, 21.1, 24.1, 37.8, 99.1 (t, *J* = 23.0 Hz), 113.0 (t, *J* = 244.0 Hz), 126.1, 126.6, 127.9, 128.6, 129.6, 131.1, 137.8, 145.8, 154.6 (t, *J* = 11.0 Hz), 167.0 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.8. HRMS (ESI-TOF) calcd for C₂₀H₂₀F₂NO, [M + H]⁺ m/z 328.1513, found 328.1506.

5-(4-Butylphenyl)-3,3-difluoro-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3h**. Colorless oil (83.9 mg, 82%). Petroleum ether/ethyl acetate = 70/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, *J* = 7.6 Hz, 3H), 1.30–1.37 (m, 2H), 1.52–1.60 (m, 2H), 2.33 (s, 3H), 2.56 (t, *J* = 7.6 Hz, 2H), 5.90 (d, *J* = 1.2 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 2H), 7.06–7.12 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 21.1, 22.3, 33.1, 35.4, 99.1 (t, *J* = 23.0 Hz), 113.0 (t, *J* = 244.0 Hz), 126.0, 126.5, 127.8, 128.5, 129.6, 131.1, 137.8, 146.0, 154.6 (t, *J* = 11.0 Hz), 167.0 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.8. HRMS (ESI-TOF) calcd for C₂₁H₂₂F₂NO, $[M + H]^+ m/z$ 342.1669, found 342.1677.

5-(4-(tert-Butyl)phenyl)-3,3-difluoro-1-(p-tolyl)-1H-pyrrol-2(3H)one **3i**. Yellow oil (85.9 mg, 84%). Petroleum ether/ethyl acetate = 70/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 1.28 (s, 9H), 2.34 (s, 3H), 5.59 (s, 1H), 6.93 (d, *J* = 8.4 Hz, 2H), 7.11 (t, *J* = 8.4 Hz, 4H), 7.29 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 31.1, 34.9, 99.2 (t, *J* = 23.0 Hz), 113.0 (t, *J* = 244.0 Hz), 125.4, 125.8, 126.6, 127.7, 129.6, 131.2, 137.8, 154.2, 154.5 (t, *J* = 11.0 Hz), 167.0 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.8. HRMS (ESI-TOF) calcd for C₂₁H₂₂F₂NO, [M + H]⁺ m/z 342.1669, found 342.1664.

3,3-Difluoro-5-(4-pentylphenyl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3***j*. Yellow oil (85.2 mg, 80%). Petroleum ether/ethyl acetate = 70/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, *J* = 6.8 Hz, 3H), 1.28–1.35 (m, 4H), 1.55–1.62 (m, 2H), 2.33 (s, 3H), 2.58 (t, *J* = 7.6 Hz, 2H), 5.60 (s, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 7.09–7.19 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 13.9, 21.1, 22.4, 30.6, 31.4, 35.7, 99.1 (t, *J* = 23.0 Hz), 113.0 (t, *J* = 244.0 Hz), 126.0, 126.5, 127.8, 128.5, 129.6, 131.1, 137.8, 146.0, 154.6 (t, *J* = 11.0 Hz), 167.0 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.7. HRMS (ESI-TOF) calcd for C₂₂H₂₄F₂NO, [M + H]⁺ m/z 356.1826, found 356.1821.

3,3-Difluoro-5-(3-fluorophenyl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3k**. White solid (81.8 mg, 90%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. Mp: 109–110 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H), 5.66 (d, *J* = 1.6 Hz, 1H), 6.89–6.92 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 1H), 7.06–7.10 (m, 1H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.24–7.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 100.6 (t, *J* = 23.0 Hz), 112.6 (t, *J* = 244.0 Hz), 115.1 (d, *J* = 23.0 Hz), 117.7 (d, *J* = 21.0 Hz), 123.8 (d, *J* = 1.0 Hz), 126.4, 129.8, 130.3 (d, *J* = 9.0 Hz), 130.7, 130.8 (d, *J* = 8.0 Hz), 138.2, 153.3 (t, *J* = 11.0 Hz), 162.3 (d, *J* = 246.0 Hz), 166.6 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –111.3, –110.4. HRMS (ESI-TOF) calcd for C₁₇H₁₃F₃NO, [M + H]⁺ *m*/z 304,0949, found 304,0939.

5-(3-Chlorophenyl)-3,3-difluoro-1-(p-tolyl)-1H-pyrrol-2(3H)-one 3I. Colorless oil (72.7 mg, 76%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 5.65 (s, 1H), 6.91 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.26 (s, 1H), 7.35 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 100.7 (t, J = 23.0 Hz), 112.6 (t, J = 245.0 Hz), 126.1, 126.5, 128.0, 129.7, 129.8, 130.5, 130.6, 130.7, 134.7, 138.2, 153.1 (t, J = 11.0 Hz), 166.6 (t, J = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.4. HRMS (ESI-TOF) calcd for C₁₇H₁₃ClF₂NO, $[M + H]^+ m/z$ 320.0654, found 320.0649.

3,3-Difluoro-5-(3-nitrophenyl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3m**. Colorless oil (69.3 mg, 70%). Petroleum ether/ethyl acetate = 60/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 5.78 (t, *J* = 1.2 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.45–7.51 (m, 2H), 8.12 (s, 1H), 8.22–8.24 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 101.6 (t, *J* = 23.0 Hz), 112.3 (t, *J* = 245.0 Hz), 123.0, 125.2, 126.2, 129.7, 130.1, 130.2, 130.4, 133.5, 138.7, 148.1, 152.1 (t, *J* = 11.0 Hz), 166.3 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.6. HRMS (ESI-TOF) calcd for C₁₇H₁₃F₂N₂O₃, $[M + H]^+ m/z$ 331.0894, found 331.0903.

3,3-Difluoro-5-(m-tolyl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3n**. Colorless oil (64.6 mg, 72%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.28 (s, 3H), 2.32 (s, 3H), 5.61 (s, 1H), 6.88–6.93 (m, 3H), 7.07–7.19 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 21.3, 99.6 (t, *J* = 23.0 Hz), 112.9 (t, *J* = 244.0 Hz), 125.1, 126.5, 128.2, 128.5, 128.7, 129.6, 131.0, 131.4, 137.8, 138.4, 154.7 (t, *J* = 11.0 Hz), 166.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.1. HRMS (ESI-TOF) calcd for C₁₈H₁₆F₂NO, [M + H]⁺ *m/z* 300.1200, found 300.1193.

N-(3-(4,4-Difluoro-5-oxo-1-(*p*-tolyl)-4,5-dihydro-1H-pyrrol-2-yl)phenyl)acetamide **30**. White solid (69.8 mg, 68%). Petroleum ether/ ethyl acetate = 40/1 as eluent for column chromatography. Mp: 136– 138 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.12 (s, 3H), 2.29 (s, 3H), 5.60 (s, 1H), 6.75 (d, *J* = 7.2 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.56 (s, 1H), 7.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.0, 24.4, 100.2 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 118.9, 121.6, 123.5, 126.4, 129.0, 129.4, 129.7, 130.8, 138.0, 138.5, 154.2 (t, *J* = 11.0 Hz), 167.0 (t, *J* = 30.0 Hz), 168.6; ¹⁹F NMR (376 MHz, CDCl₃): δ −110.2. HRMS (ESI-TOF) calcd for C₁₉H₁₇F₂N₂O₂, [M + H]⁺ m/z 343.1258, found 343.1251.

N-(3-(4,4-Difluoro-5-oxo-1-(*p*-tolyl))-4,5-dihydro-1H-pyrrol-2-yl)phenyl)pivalamide **3p**. White solid (78.4 mg, 68%). Petroleum ether/ ethyl acetate = 40/1 as eluent for column chromatography. Mp: 178– 179 °C. ¹H NMR (400 MHz, DMSO): δ 1.21 (s, 9H), 2.27 (s, 3H), 6.07 (s, 1H), 6.70 (d, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 7.18 (t, *J* = 8.0 Hz, 3H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.89 (s, 1H), 9.34 (s, 1H); ¹³C NMR (100 MHz, DMSO): δ 25.8, 32.3, 44.4, 104.5 (t, *J* = 23.0 Hz), 118.5 (t, *J* = 243.0 Hz), 124.8, 127.2, 127.7, 132.3, 133.6, 133.8, 134.7, 136.0, 142.9, 145.0, 160.0 (t, *J* = 11.0 Hz), 171.6 (t, *J* = 30.0 Hz), 181.8; ¹⁹F NMR (376 MHz, DMSO): δ −108.9. HRMS (ESI-TOF) calcd for C₂₂H₂₃F₂N₂O₂, [M + H]⁺ *m*/*z* 385.1728, found 385.1729.

N-(3-(4,4-Difluoro-5-oxo-1-(*p*-tolyl))-4,5-dihydro-1H-pyrrol-2-yl)phenyl)benzamide **3q**. White solid (86.1 mg, 71%). Petroleum ether/ ethyl acetate = 40/1 as eluent for column chromatography. Mp: 170– 171 °C. ¹H NMR (400 MHz, DMSO): δ 2.28 (s, 3H), 6.10 (s, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 7.2 Hz, 2H), 8.00 (s, 1H), 10.39 (s, 1H); ¹³C NMR (100 MHz, DMSO): δ 21.0, 99.9 (t, *J* = 23.0 Hz), 113.8 (t, *J* = 243.0 Hz), 120.1, 122.7, 123.6, 127.5, 128.1, 128.9, 129.2, 129.3, 130.0, 131.3, 132.2, 135.1, 138.1, 140.0, 155.2 (t, *J* = 11.0 Hz), 166.2, 166.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, DMSO): δ –108.8. HRMS (ESI-TOF) calcd for C₂₄H₁₉F₂N₂O₂, [M + H]⁺ *m*/z 405.1415, found 405.1423.

tert-Butyl (3-(4,4-Difluoro-5-oxo-1-(p-tolyl)-4,5-dihydro-1H-pyrrol-2-yl)phenyl)carbamate **3r**. White solid (76.8 mg, 64%). Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. Mp: 147–148 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.51 (s, 9H), 2.31 (s, 3H), 5.63 (s, 1H), 6.48 (s, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.45 (s, 1H); 13 C NMR (100 MHz, CDCl₃): δ 21.1, 28.3, 81.1, 100.1 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 117.6, 120.3, 122.4, 126.5, 129.0, 129.7, 130.9, 137.8, 138.8, 152.4, 154.3 (t, *J* = 11.0 Hz), 166.9 (t, *J* = 30.0 Hz); 19 F NMR (376 MHz, CDCl₃): δ –110.2. HRMS (ESI-TOF) calcd for C₂₂H₂₃F₂N₂O₃, [M + H]⁺ *m/z* 401.1677, found 401.1676.

3,3-Difluoro-5-(2-fluorophenyl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one 3s. Colorless oil (53.6 mg, 59%). Petroleum ether/ethyl acetate = 60/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.29 (s, 3H), 5.70 (s, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 7.00 (t, *J* = 9.2 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 6.8 Hz, 1H), 7.35–7.40 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 102.5 (dt, *J*₁ = 3.0 Hz, *J*₂ = 23.0 Hz), 112.5 (t, *J* = 245.0 Hz), 116.2 (d, *J* = 21.0 Hz), 117.3 (d, *J* = 14.0 Hz), 124.3 (d, *J* = 3.0 Hz), 126.1, 129.5, 130.2 (d, *J* = 2.0 Hz), 130.7, 132.6 (d, *J* = 8.0 Hz), 137.9, 149.7 (t, *J* = 11.0 Hz), 159.5 (d, *J* = 251.0 Hz), 166.1 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –111.2, –110.0 HRMS (ESI-TOF) calcd for C₁₇H₁₃F₃NO, [M + H]⁺ *m*/z 304,0949, found 304,0950.

5-(2-Chlorophenyl)-3,3-difluoro-1-(p-tolyl)-1H-pyrrol-2(3H)-one 3t. Colorless oil (52.6 mg, 55%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.26 (s, 3H), 5.64 (d, *J* = 1.2 Hz, 1H), 6.90 (d, *J* = 6.8 Hz, 2H), 7.03 (d, *J* = 7.6 Hz, 2H), 7.24–7.32 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 21.0, 102.5 (t, *J* = 23.0 Hz), 112.6 (t, *J* = 245.0 Hz), 126.3, 126.9, 128.5, 129.4, 130.0, 130.4, 130.7, 131.6, 133.1, 137.9, 152.4 (t, *J* = 11.0 Hz), 165.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -111.7. HRMS (ESI-TOF) calcd for C₁₇H₁₃ClF₂NO, [M + H]⁺ m/z 320.0654, found 320.0652.

3,3-Difluoro-5-(thiophen-3-yl)-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3u**. White solid (62.9 mg, 72%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. Mp: 76–78 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.39 (s, 3H), 5.66 (s, 1H), 6.95 (d, *J* = 5.2 Hz, 1H), 6.99 (s, 1H), 7.04 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 98.0 (t, *J* = 23.0 Hz), 113.0 (t, *J* = 244.0 Hz), 126.4, 126.6, 127.3, 127.5, 129.4, 129.9, 131.1, 138.7, 149.2 (t, *J* = 11.0 Hz), 166.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.6. HRMS (ESI-TOF) calcd for C₁₅H₁₂F₂NOS, [M + H]⁺ *m*/*z* 292.0608, found 292.0610.

3,3-Difluoro-5-phenyl-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3v**. White solid (76.3 mg, 85%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. Mp: 112–113 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.91 (t, J = 2.4 Hz, 3H), 2.27 (s, 3H), 6.84 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 7.11–7.13 (m, 2H), 7.28–7.36 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 7.1, 21.0, 108.5 (t, J = 2.0 Hz), 113.0 (t, J = 246.0 Hz), 126.4, 128.0, 128.4, 129.1, 129.5, 129.7, 131.0, 137.4, 146.2 (t, J = 10.0 Hz), 166.3 (t, J = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –116.8. HRMS (ESI-TOF) calcd for C₁₈H₁₆F₂NO, [M + H]⁺ m/z 300.1200, found 300.1200.

3,3-Difluoro-5-phenyl-1-(p-tolyl)-1H-pyrrol-2(3H)-one **3w**. Colorless oil (77.0 mg, 82%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 1.20 (t, *J* = 7.6 Hz, 3H), 2.26 (s, 3H), 2.34 (q, *J* = 7.6 Hz, 3H), 6.85 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 6.4 Hz, 2H), 7.28–7.36 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 16.4, 21.0, 113.8 (t, *J* = 246.0 Hz), 113.9 (t, *J* = 20.0 Hz), 126.4, 128.1, 128.4, 128.9, 129.4, 129.7, 130.9, 137.4, 146.6 (t, *J* = 10.0 Hz), 166.2 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –114.4. HRMS (ESITOF) calcd for C₁₉H₁₈F₂NO, [M + H]⁺ *m*/z 314.1356, found 314.1356.

3,3-Difluoro-1,5-diphenyl-1H-pyrrol-2(3H)-one **4b**. Colorless oil (65.1 mg, 80%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 5.66 (s, 1H), 7.04 (d, *J* = 6.8 Hz, 2H), 7.18 (d, *J* = 7.2 Hz, 2H), 7.27–7.33 (m, 5H), 7.38 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 100.0 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 126.7, 127.8, 127.9, 128.5, 128.7, 129.0, 130.7, 133.5, 154.5 (t, *J* = 11.0 Hz), 166.7 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.9. HRMS (ESI-TOF) calcd for C₁₆H₁₂F₂NO, [M + H]⁺ *m*/*z* 272.0887, found 272.0888.

1-(4-Chlorophenyl)-3,3-difluoro-5-phenyl-1H-pyrrol-2(3H)-one 4c. Colorless oil (59.5 mg, 65%). Petroleum ether/ethyl acetate = 60/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 5.66 (s, 1H), 6.96 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.6 Hz, 2H), 7.27–7.34 (m, 4H), 7.41 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 100.4 (t, J = 24.0 Hz), 112.7 (t, J = 244.0 Hz), 127.8, 127.9, 128.4, 128.7, 129.2, 130.9, 132.1, 133.6, 154.0 (t, J = 11.0 Hz), 166.5 (t, J = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.7. HRMS (ESI-TOF) calcd for C₁₆H₁₁ClF₂NO, [M + H]⁺ m/z 306.0497, found 306.0487.

1-(4-Bromophenyl)-3,3-difluoro-5-phenyl-1H-pyrrol-2(3H)-one **4d**. Colorless oil (71.0 mg, 68%). Petroleum ether/ethyl acetate = 60/ 1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 5.66 (s, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.40–7.45 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 100.5 (t, *J* = 24.0 Hz), 112.7 (t, *J* = 244.0 Hz), 121.6, 127.9, 128.1, 128.4, 128.7, 130.9, 132.2, 132.6, 154.0 (t, *J* = 11.0 Hz), 166.5 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –109.7. HRMS (ESI-TOF) calcd for C₁₆H₁₁BrF₂NO, [M + H]⁺ *m*/*z* 349.9992, found 349.9987.

1-(4-Ethylphenyl)-3,3-difluoro-5-phenyl-1H-pyrrol-2(3H)-one **4e**. Colorless oil (75.3 mg, 84%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 1.21 (t, *J* = 7.6 Hz, 3H), 2.62 (q, *J* = 7.6 Hz, 2H), 5.63 (s, 1H), 6.94 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 15.2, 28.4, 99.8 (t, *J* = 23.0 Hz), 112.9 (t, *J* = 244.0 Hz), 126.5, 127.9, 128.4, 128.5, 128.8, 130.6, 131.1, 144.1, 154.6 (t, *J* = 11.0 Hz), 166.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -110.0. HRMS (ESI-TOF) calcd for C₁₈H₁₆F₂NO, [M + H]⁺ m/z 300.1200, found 300.1190.

1-(4-(tert-Butyl)phenyl)-3,3-difluoro-5-phenyl-1H-pyrrol-2(3H)one **4f**. White solid (81.4 mg, 83%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. Mp: 121–123 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.29 (s, 9H), 5.65 (s, 1H), 6.96 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 2H), 7.28–7.34 (m, 4H), 7.39 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 31.2, 34.6, 99.8 (t, *J* = 23.0 Hz), 112.9 (t, *J* = 244.0 Hz), 125.9, 126.1, 127.9, 128.4, 128.8, 130.6, 130.8, 151.0, 154.6 (t, *J* = 11.0 Hz), 166.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.0. HRMS (ESI-TOF) calcd for C₂₀H₂₀F₂NO, [M + H]⁺ *m*/z 328.1513, found 328.1518.

3,3-Difluoro-1-(4-methoxyphenyl)-5-phenyl-1H-pyrrol-2(3H)-one **4g**. White solid (77.7 mg, 86%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. Mp: 142–143 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 3H), 5.62 (s, 1H), 6.82 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 7.18 (d, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.4, 99.6 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 114.3, 126.2, 128.0, 128.0, 128.5, 128.7, 130.6, 154.6 (t, *J* = 11.0 Hz), 159.0, 167.0 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.2. HRMS (ESI-TOF) calcd for C₁₇H₁₄F₂NO₂, [M + H]⁺ m/z 302.0993, found 302.0984.

3,3-Difluoro-5-phenyl-1-(m-tolyl)-1H-pyrrol-2(3H)-one **4h**. Colorless oil (71.9 mg, 84%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.30 (s, 3H), 5.65 (s, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 6.94 (s, 1H), 7.10 (d, *J* = 7.2 Hz, 1H), 7.16–7.21 (m, 3H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 99.8 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 123.7, 127.3, 127.9, 128.4, 128.7, 128.8, 130.6, 133.5, 139.1, 154.6 (t, *J* = 11.0 Hz), 166.8 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –110.0. HRMS (ESI-TOF) calcd for C₁₇H₁₄F₂NO, [M + H]⁺ *m*/z 286.1043, found 286.1033.

3,3-Difluoro-5-phenyl-1-(o-tolyl)-1H-pyrrol-2(3H)-one **4i**. Colorless oil (62.4 mg, 73%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.19 (s, 3H), 5.66 (d, *J* = 2.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 7.2 Hz, 3H), 7.23-7.27 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 17.9, 99.3 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 126.8, 127.6, 128.5, 128.5, 128.8, 129.1, 130.7, 131.3, 132.8, 136.3, 154.9 (t, *J* = 11.0 Hz), 166.7 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -110.6. HRMS (ESI-TOF) calcd for C₁₇H₁₄F₂NO, [M + H]⁺ *m*/z 286.1043, found 286.1045.

1-(3,4-Dimethoxyphenyl)-3,3-difluoro-5-phenyl-1H-pyrrol-2(3H)one **4j**. Colorless oil (75.0 mg, 83%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 3.52 (s, 3H), 5.59 (s, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 7.19–7.35 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 55.3, 98.5 (t, J = 23.0 Hz), 112.1, 113.0 (t, J = 244.0 Hz), 120.8, 122.5, 127.1, 128.1, 129.5, 129.6, 130.2, 130.2, 154.9, 155.7 (t, J = 11.0 Hz), 167.2 (t, J = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –111.1 (d, J = 304.6 Hz, 1F), –109.4 (d, J = 300.8 Hz, 1F) calcd for C₁₇H₁₄F₂NO₂; [M + H]⁺ m/z 302.0993, found 302.0991.

1-(3,4-Dimethoxyphenyl)-3,3-difluoro-5-phenyl-1H-pyrrol-2(3H)one 4k. White solid (88.4 mg, 89%). Petroleum ether/ethyl acetate = 60/1 as eluent for column chromatography. Mp: 130–131 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.68 (s, 3H), 3.84 (s, 3H), 5.63 (d, J =2.0 Hz, 1H), 6.51 (d, J = 2.4 Hz, 1H), 6.61 (dd, $J_1 =$ 2.4 Hz, $J_2 =$ 8.8 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 7.19 (t, J = 7.2 Hz, 2H), 7.29 (t, J =7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.9, 55.9, 99.5 (t, J = 23.0 Hz), 110.4, 110.9, 112.8 (t, J = 244.0 Hz), 119.3, 126.3, 127.9, 128.4, 128.8, 130.5, 148.5, 149.0, 154.6 (t, J = 11.0 Hz), 166.8 (t, J = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): $\delta -$ 110.2. HRMS (ESI-TOF) calcd for C₁₈H₁₆F₂NO₃, [M + H]⁺ m/z 332.1098, found 332.1096.

1-Benzyl-3,3-difluoro-5-phenyl-1H-pyrrol-2(3H)-one **4**l. Colorless oil (58.2 mg, 68%). Petroleum ether/ethyl acetate = 70/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 4.65 (s, 2H), 5.42 (s, 1H), 6.89–6.92 (m, 2H), 7.20–7.23 (m, 5H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 44.4, 100.0 (t, *J* = 23.0 Hz), 113.0 (t, *J* = 244.0 Hz), 127.2, 127.7, 127.9, 128.7, 128.7, 129.0, 130.7, 135.8, 155.0 (t, *J* = 11.0 Hz), 168.1 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –112.2. HRMS (ESI-TOF) calcd for C₁₇H₁₄F₂NO, [M + H]⁺ *m*/*z* 286.1043, found 286.1037.

3,3-Difluoro-1-phenethyl-5-phenyl-1H-pyrrol-2(3H)-one 4m. Colorless oil (56.6 mg, 63%). Petroleum ether/ethyl acetate = 70/1 as eluent for column chromatography. ¹H NMR (400 MHz, CDCl₃): δ 2.68 (t, *J* = 7.2 Hz, 2H), 3.70 (t, *J* = 7.2 Hz, 2H), 5.33 (s, 1H), 6.91–6.93 (m, 2H), 7.20–7.26 (m, 5H), 7.43–7.53 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 34.3, 42.3, 99.7 (t, *J* = 23.0 Hz), 112.8 (t, *J* = 244.0 Hz), 126.7, 127.7, 128.6, 128.8, 128.9, 129.0, 130.6, 137.3, 154.9 (t, *J* = 11.0 Hz), 167.9 (t, *J* = 30.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –112.8. HRMS (ESI-TOF) calcd for C₁₈H₁₆F₂NO, [M + H]⁺ m/z 300.1200, found 300.1204.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b01313.

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra for compounds **1**, **2**, **3**, and **4** (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: luyh086@nenu.edu.cn.

*E-mail: zhangq651@nenu.edu.cn.

ORCID 💿

Yunhe Lv: 0000-0001-5804-7475

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the Henan Province Key Laboratory of New Optoelectronic Functional Materials, the Science and Technology Foundation of Henan Province, the National NSF of China (Grant 21372041), and Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis (Grant 130028651) for financial support.

The Journal of Organic Chemistry

REFERENCES

(1) (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; Del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. *Chem. Rev.* **2014**, *114*, 2432. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* **2008**, *37*, 320. (c) Muller, K.; Faeh, C.; Diederich, F. *Science* **2007**, *317*, 1881. (d) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. *Chem. Rev.* **2016**, *116*, 422.

(2) (a) Larsson, S.; Rønsted, N. Curr. Top. Med. Chem. 2013, 14, 274.
(b) Mailyan, A. K.; Eickhoff, J. A.; Minakova, A. S.; Gu, Z.; Lu, P.; Zakarian, A. Chem. Rev. 2016, 116, 4441. (c) Berlinck, R. G. S.; Romminger, S. Nat. Prod. Rep. 2016, 33, 456.

(3) For some reviews on the synthesis of fluorinated heterocycles, see: (a) Petrov, V. A. Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications; John Wiley and Sons, Inc.: Hoboken, NJ, 2009. (b) Nosova, E. V.; Lipunova, G. N.; Charushin, V. N.; Chupakhin, O. N. J. Fluorine Chem. 2010, 131, 1267. For some selective examples, see: (c) Xu, T.; Liu, G. S. Org. Lett. 2012, 14, 5416. (d) Kwiatkowski, P.; Beeson, T. D.; Conrad, J. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 1738. (e) Kishi, Y.; Nagura, H.; Inagi, S.; Fuchigami, T. Chem. Commun. 2008, 44, 3876. (f) Fustero, S.; Catalan, S.; Sanchez-Rosello, M.; Simon-Fuentes, A.; delPozo, C. Org. Lett. 2010, 12, 3484. (g) Wang, R.-W.; Qing, F.-L. Org. Lett. 2005, 7, 2189. (h) Bootwicha, T.; Panichakul, D.; Kuhakarn, C.; Prabpai, S.; Kongsaeree, P.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M. J. Org. Chem. 2009, 74, 3798.

(4) (a) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079. (b) Sun, J.; Zheng, G.; Xiong, T.; Zhang, Q.; Zhao, J.; Li, Y.; Zhang, Q. ACS Catal. 2016, 6, 3674.
(c) Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q. Nat. Commun. 2015, 6, 7011.

(5) (a) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. *Chem. - Eur. J.* 2015, 21, 12836. (b) Xiao, Y. L.; Guo, W. H.; He, G. Z.; Pan, Q.; Zhang, X. G. *Angew. Chem., Int. Ed.* 2014, 53, 9909. (c) Prieto, A.; Melot, R.; Bouyssi, D.; Monteiro, N. *ACS Catal.* 2016, 6, 1093. (d) Huang, W. H.; Chen, W. X.; Wang, G. Q.; Li, J.; Cheng, X.; Li, G. G. *ACS Catal.* 2016, 6, 7471.

(6) (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (c) Dubowchik, G. M.; Vrudhula, V. M.; Dasgupta, B.; Ditta, J.; Chen, T.; Sheriff, S.; Sipman, K.; Witmer, M.; Tredup, J.; Vyas, D. M.; Verdoorn, T. A.; Bollini, S.; Vinitsky, A. Org. Lett. 2001, 3, 3987. (d) Grunewald, G. L.; Seim, M. R.; Lu, J.; Makboul, M.; Criscione, K. R. J. Med. Chem. 2006, 49, 2939. (e) Smyth, M. S.; Ford, H., Jr.; Burke, T. R., Jr. Tetrahedron Lett. 1992, 33, 4137. (f) O'Hagan, D.; Wang, Y.; Skibinski, M.; Slawin, A. M. Z. Pure Appl. Chem. 2012, 84, 1587. (g) Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier, S. J. Med. Chem. 2017, 60, 797.

(7) (a) Tran, B. L.; Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc.
2014, 136, 2555. (b) Yamaguchi, T.; Yamaguchi, E.; Itoh, A. Org. Lett.
2017, 19, 1282. (c) Choi, G. C.; Knowles, R. R. J. Am. Chem. Soc.
2015, 137, 9226. (d) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res.
2016, 49, 1546.

(8) (a) Ni, C.; Zhu, L.; Hu, J. Huaxue Xuebao 2015, 73, 90.
(b) Chen, B.; Vicic, D. A. In *Topics in Organometallic Chemistry*; Springer International Publishing: Cham, 2014; p 113.

(9) (a) Lin, Q. Y.; Xu, X. H.; Zhang, K.; Qing, F. L. Angew. Chem., Int. Ed. 2016, 55, 1479. (b) Ran, Y.; Lin, Q. Y.; Xu, X. H.; Qing, F. L. J. Org. Chem. 2016, 81, 7001. (c) Gu, J. W.; Min, Q. Q.; Yu, L. C.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 12270. (d) Thomoson, C. S.; Tang, X. J.; Dolbier, W. R. J. Org. Chem. 2015, 80, 1264. (e) Zhang, M.; Li, W.; Duan, Y.; Xu, P.; Zhang, S.; Zhu, C. Org. Lett. 2016, 18, 3266.

(10) (a) Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910. (b) Belhomme, M.-C.; Dru, D.; Xiong, H.-Y.; Cahard, D.; Besset, T.; Poisson, T.; Pannecoucke, X. Synthesis 2014, 46, 1859. (c) Li, Z.; García-Domínguez, A.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610. (d) Domański, S.; Chaładaj, W. ACS Catal. 2016, 6, 3452. (e) He, Y.-T.; Wang, Q.; Li, L.-H.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M.

Org. Lett. **2015**, *17*, 5188. (f) Wang, Q.; He, Y.-T.; Zhao, J.-H.; Qiu, Y.-F.; Zheng, L.; Hu, J.-Y.; Yang, Y.-C.; Liu, X.-Y.; Liang, Y.-M. *Org. Lett.* **2016**, *18*, 2664. (g) He, Y.-T.; Li, L.-H.; Wang, Q.; Wu, W.; Liang, Y.-M. *Org. Lett.* **2016**, *18*, 5158. (h) Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z.; Ji, B. *J. Org. Chem.* **2015**, *80*, 4766. (i) Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Hu, J.-Y.; Yang, Y.-C.; Liang, Y.-M. *Chem. Commun.* **2016**, *52*, 10396.

(11) (a) Fustero, S.; Fernandez, B.; Bello, P.; Del Pozo, C.; Arimitsu, S.; Hammond, G. B. Org. Lett. 2007, 9, 4251. (b) Nguyen, Q. P. B.; Kim, B. M.; Song, M. S.; Yoon, K. H.; Chai, K. Y. Bull. Korean Chem. Soc. 2014, 35, 313. (c) Zhou, L.; Hossain, M. L.; Xiao, T. Chem. Rec. 2016, 16, 319. (d) Shi, S.-L.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1646.

(12) The products were unidentifiable.

(13) (a) Zhao, B. G.; Yuan, W. C.; Du, H. F.; Shi, Y. A. Org. Lett.
2007, 9, 4943. (b) Zhao, B. G.; Peng, X. G.; Zhu, Y. G.; Ramirez, T. A.; Cornwall, R. G.; Shi, Y. A. J. Am. Chem. Soc. 2011, 133, 20890.
(c) Büttner, T.; Geier, J.; Frison, G.; Harmer, J.; Calle, C.; Schweiger, A.; Schönberg, H.; Grützmacher, H. Science 2005, 307, 235.

(14) (a) Ge, G. C.; Huang, X. J.; Ding, C. H.; Wan, S. L.; Dai, L. X.; Hou, X. L. Chem. Commun. 2014, 50, 3048. (b) Wang, F.; Zhu, N.; Chen, P. H.; Ye, J. X.; Liu, G. S. Angew. Chem., Int. Ed. 2015, 54, 9356. (15) Vilaivan, T. Tetrahedron Lett. 2006, 47, 6739.